U1L4 Zero and Negative Exponent notes
(A) See the pattern

| $3^{3}=3 \times 3 \times 3$ | $=27 \div \div 3$ | $10^{3}=10 \times 10 \times 10$ |
| :--- | :--- | :--- |$=10007 \div 10$

\# 2) Negative Exponents: FLIP base, change neg exponent to a pos exponent

$$
\begin{aligned}
& \text { i) } \begin{aligned}
& \frac{3^{-2}}{}=\frac{1}{3^{+2}}=\frac{1}{9} \\
& 3^{+2}=3 \cdot 3=9 \\
& \text { iiii) } \begin{aligned}
&\left(\frac{5}{8}\right)^{-2}=\left(\frac{8}{5}\right)^{+2} \\
&=\left(\frac{8}{5}\right)\left(\frac{8}{5}\right)=\frac{8^{2}}{5^{2}}=\frac{64}{25} \\
&=\frac{8^{2}}{5^{2}}
\end{aligned}
\end{aligned} .=\begin{array}{l}
\end{array}
\end{aligned}
$$

$$
\text { ii) } \frac{4^{-3}}{}=\frac{1}{4^{+3}}=\frac{1}{64}
$$

$$
4^{+3}=4 \cdot 4 \cdot 4=64
$$

(B) Try: i) $3^{D}=1 \quad n=0 \checkmark$
ii) $2^{-3}=\frac{1}{2^{3}}=\frac{1}{8} \checkmark$
$\begin{aligned} \text { iii) }-\sqrt{2}^{2}=-9 & =-(3)(3) \\ \text { (年 } \text { iv }(-3)^{2}=+9 & =(-3)(-3)\end{aligned}$
(c) Simplified Exponential Form

$$
\begin{array}{lll}
\frac{1}{4}=4^{-1} & \text { OR } & \frac{1}{4}=\frac{1}{2^{2}}=2^{-2} \\
\frac{1}{9}=9^{-1} & \text { OR } & \frac{1}{9}=\frac{1}{3^{2}}=3^{-2} \\
\frac{1}{81}=81^{-1} & \text { OR } & \frac{1}{81}=\frac{1}{9^{2}}=9^{-2}
\end{array}
$$

Try:
i) $\frac{1}{8}=2^{-3}$
iv) $\frac{1}{27}=3^{-3} \checkmark$
ii) $\frac{1}{25}=5^{-2}$
v) $\frac{1}{100}=10^{-2} \mathrm{l}$
vii) $\frac{1}{64}=2^{-6}$
ii) $\frac{1}{25}=5^{\circ} \mathrm{V}$
v) $\frac{1}{100}=10 \mathrm{r}$
vii) $\frac{1}{64}=2^{r}$
iii) $\frac{1}{32}=2^{-9} \checkmark$
vi) $\frac{1}{16}=2^{-4} \mathrm{~J}$

HOW, TO CHNGE INTO NEG EXP. POWER? DETERMNE IF \# IS PERFEGT SQuARE,
CuBE, 4 th RDOI ...
Assignment: U|L4 wkst:1-27,28,30,32

